【资料图】
举例来说,在芯片设计过程中,设计验证工程师常常要加班加点运行无数次回归,为实现覆盖率目标耗费心神,即使在验证方面投入非常大的人力和时间,流片时出现功能失效的风险也很高。针对这一问题,Xcelium 的机器学习 App(Xcelium Machine Learning) 引入了 Cadence 专有的机器学习技术,它不仅能加速覆盖收敛,还可从以往的回归运行中学习并指导 Xcelium 随机引擎,在实现相同覆盖率的前提下大幅度减少仿真次数,最多可以减少十倍,或者是在特定的覆盖点产生激励以便发现更多的漏洞。通过减少仿真次数和更精准的测试激励,工程师们可以更加专注于发现和解决设计中的问题,而不是被重复的回归运行所困扰。
再比如,针对汽车中的功能安全,Cadence 的 Xcelium 是市面上唯一一款在主引擎中启用并发注入的仿真器,Xcelium Safety App 能够同时支持串行和并行故障仿真。结合 Jasper Safety、vManager Safety 和 Midas Safety Planner 等 Cadence 安全验证全流程工具,Xcelium 能够高效地执行安全错误注入,以满足 ISO 26262 标准的要求。此外,Cadence 提供了广泛的汽车功能安全文档套件,涵盖了半导体设计和验证的全谱系。该套件大大减少了供应商在每个汽车设计项目中进行工具用例评估的工作量,并帮助他们避免昂贵的工具认证工作。
而对于想要走 Chiplet 路线的芯片公司,Xcelium 的多核应用(Multi-Core App)是一个高度可扩展的用于加速门级仿真的解决方案。它自动将芯片设计分解成若干个独立的部分,并在服务器的并行内核上对其进行仿真,从而大大缩短了 SystemVerilog 设计的仿真用时,尤其适用于大规模设计。
关键词: